搜索结果: 1-9 共查到“应用数学 SOBOLEV”相关记录9条 . 查询时间(0.051 秒)
Growth of Sobolev norms in the cubic defocusing nonlinear Schrodinger equation
Sobolev norms cubic defocusing nonlinear Schrodinger equation
2015/9/25
We consider the cubic defocusing nonlinear Schr¨odinger equation in the two dimensional torus. Fix s > 1. Colliander, Keel, Staffilani, Tao and Takaoka proved in [CKS+10] the existence of solutions wi...
A new approach to some Sobolev injections in R^n parallelepiped
Sobolev injections parallelepiped
2010/9/20
Using eigenvalues and eigenfunctions of −Δ with homogeneous Dirichlet boundary conditions on ∂Ω, where Ω is a parallelepiped of IRn , we prove some Sobolev injections.
包含临界Sobolev-Harty指数的奇异椭圆方程的Neumann问题
奇异 变分方法 山路引理 Neumann问题
2012/11/20
在0∈Ω的情况下解决了一类包含临界Sobolev-Harty指数的奇异椭圆方程解的存在性,它与0∈Ω是不同的.证明了方程所对应的变分泛函满足局部(PS)条件,得到一个广义存在性定理.
A Multiplicative Embedding Inequality in Orlicz-Sobolev Spaces
Orlicz spaces Sobolev embedding theorem Orlicz-Sobolev spaces
2008/7/3
We prove an Orlicz type version of the multiplicative embedding inequality for Sobolev spaces.
A Sobolev-type Inequality with Applications
Sobolev-type inequality Linear decay rates Viscous shocks
2008/7/3
In this note, a Sobolev-type inequality is proved. Applications to obtaining linear decay rates for perturbations of viscous shocks are also discussed.
Corrigendum on the paper: 'Lower Bounds for the Infimum of the Spectrum of the Schr鮠inger Operator in \mathbb{R}^N and the Sobolev Inequalities' published in JIPAM, vol. 3, no. 4. (2002), Article 63
Optimal lower bound infimum spectrum Schrõ dinger operator Sobolev inequality
2008/7/2
This paper is a corrigendum on a paper published in an earlier volume of JIPAM, 'Lower Bounds for the Infimum of the Spectrum of the Schrodinger Operator in and the Sobolev Inequalities' published in...
Lower Bounds for the Infimum of the Spectrum of the Schrödinger Operator in $\mathbb{R}^n$ and the Sobolev Inequalities
Optimal lower bound Infimum spectrum Schrö dinger operator Sobolev inequality
2008/7/1
Lower Bounds for the Infimum of the Spectrum of the Schrödinger Operator in $\mathbb{R}^n$ and the Sobolev Inequalities.
本文给出了一种广义周期 Besov类在周期Sobolev 空间中的$n$-宽度的弱渐近估计.
Finite Dimensional Behavior for Forced Nonlinear Sobolev-Galpern Equations
Nonlinear Sobolev-Galpern equations asymptotic behavior global attractor energy equation weak continuity
2007/12/11
This paper deals with the asymptotic behavior ofsolutions for the nonlinear Sobolev-Galpern equations. We firstshow the existence of the global weak attractor in $H^2(\Omega)\cap H_0^1(\Omega )$ for t...